Suggested Goal: DOT Standard for DSRC Do old functions in new way i.e. Toll Collection Do New function not possible before i.e. road / vehicle communication

TRANSIT DSRC INTEREST

5.9 GHz STAKEHOLDERS WORKSHOP FOR ITS APPLICATIONS

December 16-17, 1999

Prepared for Federal Transit Administration

Joseph LoVecchio

DOT Volpe Center

Types of Transit DSRC Applications

- Download bus stored data at garage
 - passenger counts
 - fare collection
 - bus operational data
- Traffic signal priority
- Access to toll roads, facilities, parking lots

New Jersey Transit

Current DSRC use:

- Access to toll roads, bridges, tunnels, express lanes
- Traffic management information

Would like to use DSRC for:

Download bus stored data at terminal

Seattle - King County Transit

Current DSRC use:

Signal priority

Would like to use DSRC for:

Download bus stored data at terminal

Chicago Transit Authority

Current DSRC use:

None

Would like to use DSRC for:

- Download bus stored data at terminal
- Access control to property
- Last minute route, schedule changes as bus departs lot

Houston - Metropolitan Transit Authority

Current DSRC use:

- •Toll Collection
- •HOV access control

Would like to use DSRC for:

Download bus stored data at terminal

Sample of Transit Market

- Signal Priority Systems
 - 23 agencies operational or being implemented
 - 33 agencies planning
- Automatic Passenger Counters Systems
 - 30 agencies operational or being implemented
 - 34 agencies planning

Other Applications Under Consideration

- Bus monitoring/identification at Natural Gas bus fueling depots
- Rail grade crossing warning for bus/vehicles
- Vehicle to vehicle fleet management applications

Summary

- There is significant transit interest in DSRC
- Widespread application has been limited by current bandwidth limitations, interference, lack of equipment interoperability
- The transit community supports the development of standards for 5.9 GHz DSRC

5.9 GHz Stakeholders Workshop

"Fleets" - Railroad Howard G. Moody Association of American Railroads

December 16, 1999

Background

- Railroads already have a one-way "AEI" tag for car (shipment) tracking using backscatter technology
- Have future data needs that may require larger file transmission and short range twoway communications
- Railroads have a several wireless communications networks, but are looking for "options" in the future

	 	
	 · · · · · · · · · · · · · · · · · · ·	
		
		
		
•		

General Application

- Would supplement AEI for large file transfer
- Would require transmission both to and from mobile vehicle (locomotive) at low speed
- · Would be located in or near yards/terminals
- Would need railroad specific messages but use DSRC protocol

Typical Railroad Application

- Event recorder download where information on train /locomotive performance over last 24 hours is downloaded
 - Mbytes of information
 - done at low speed 5 MPH
 - single vehicle
 - · maximum range 200 feet
 - · two tracks

DSRC Advantages for Railroads

- · Can accommodate large file transactions
- · low cost implementation on vehicles
- large market (highway) for products to reduce cost for small market (railroads)
- non-interfering, and don't have to compete/pay for spectrum

	
	
	
	
	•
	

Status

- Looking at a host of alternatives for large file transfer to/from mobile, but no decisions have been made - more of a future system use
- Have an industry task force looking at potential wireless applications and technology
- ARINC provides substantial contractor support - so we are/will be aware of DCRC developments

~~~~~~	 	
	, , , , , , , , , , , , , , , , , , , 	

A Vendor Perspective

Some Thoughts
for the
5.9 GHz Stakeholder Workshop
December 16-17, 1999

Dick Schnacke
Intermec / Amtech Systems Division

Intermec

Vendors - A huge stake

- ▼ Nobody cares more than DSRC vendors about:
 - ➤ how DSRC fares in the big ITS communications land grab
 - ➤ whether new ITS applications become real
 - ➤ how the 915 MHz vs 5.9 GHz shootout ends
- ▼ These things size our markets and scope our activities
- ▼ Vendors face crucial decisions today
 - and they have to bet the ranch on some of them (or at least the south forty)
 Intermec

Vendor issues du jour

- ▼ Old 915 MHz vs new 915 MHz
- ▼ Either 915 MHz choice vs 5.9 GHz
- ▼ Single-mode vs multi-mode devices
- ▼ Support a few (core) services vs multi-appl.
- ▼ Stand-alone vs integrated onboard units
- ▼ IDB wireless link?
- ▼ Technical: speed, range, data rate, etc.
- ▼ Customer migration
- ▼ A global market
- ▼ Liability (safety applications)
- ▼ Cost, cost, cost, cost

Intermec

Perceptions

•	Destiny	Will fade away	The FUTURE
•	Cost	Not worth an upgrade	May be worth it
▼	Migration	Difficult	Easy
•	National Interoperability	Doomed by legacy	Possible
▼	Range	OK for toll, BUT	Allows new applications
•	Interference	Getting worse	No problems
•	Technology	Old	New
		915 MHz	5.9 GHz

▼ Are these perceptions justified?

Why move to 5.9 GHz?

- ▼ If the applications of the future are the same as the applications of today there is no real reason to leave 915 MHz.
 - ➤ It works fine
 - ➤ No unworkable interference and none expected that we can't deal with
 - Change channels, Increase power
 - ➤ Worst case improve filtering & sensitivities (much cheaper than developing 5.9 GHz solutions)
 - ➤ It's inexpensive

Many Markets Currently Served

Intermec

Why move to 5.9 GHz?

- ▼ There are only a few reasons to consider moving from 915 MHz to 5.9 GHz
 - ➤ Bandwidth for more applications
 - ➤ Protection for safety services
 - ➤ A 'fresh start' toward interoperability
- ▼ Everything else works to favor 915 MHz
 - ➤ The physics
 - ➤ Migration
 - ➤ Cost

You Can't Beat the Physics

- ▼ Signal Attenuation
 - ➤ For same power, more attenuation = less range
 - ➤ Adequate range is especially important in high speed, long range applications
 - ➤ 915 MHz
 - Low atmospheric attenuation = Good range 5.8 GHz
 - Higher atmospheric attenuation = Lower range

Intermec

You Can't Beat the Physics (cont.)

- **▼** Signal Fading
 - ➤ Fading effects are proportional to frequency
 - ➤ Directly affects the reliability of data transfer
 - ➤ Faded transmissions require re-send of data
 - ➤ 915 MHz
 - Moderate fading occurs
 - Re-send occasionally necessary
 - ➤ 5.8 GHz
 - Serious fading occurs: Re-send OFTEN necessary
 - Theory: 7 times worse than 915 MHz
 - Empirically: 3-4 times worse

You Can't Beat the Physics (cont.)

- **▼** Microwave Line Losses
 - ➤ 915 MHz
 - · Losses are low
 - RF source-to-antenna distances up to 200 feet
 - Allows all maintainable components to be conveniently located at ground level in safe, clear areas
 - ➤ 5.8 GHz
 - · Losses are high
 - RF source-to-antenna distances must be very short
 - Requires RF components be located over the lane
 - Maintenance requires either very large, strong manrated antenna structures or lane closure & man-lift

Intermec

You Can't Beat the Physics (cont.)

- ▼ Antenna Pattern
 - ➤ Small pattern = small communication zone
 - ➤ Small comm zone = short comm time
 - ➤ Advanced ITS applications require more time
 - ➤ 915 MHz
 - Inherently large (floodlight) pattern
 - ➤ 5.8 GHz
 - Inherently small (spotlight) pattern
 - Very short time to complete transaction
 - · More hardware needed to cover the roadway

Why move to 5.9 GHz?

▼ If we're serious about implementation of multiple new applications/services especially safety services:

It MUST be 5.9 GHz

- ➤ Bandwidth
- ➤ Protection (primary status)
- ➤ Performance improvements
- ▼ So...if we're <u>serious</u> about moving beyond conventional services....the 915 vs 5.9 decision should be easy.

The market wants more performance

- **▼** Support for multiple applications
- ▼ More range
- ▼ Ability to handle more data
 - ➤ memory
 - ➤ data rate
- **▼** More security
- **▼** More features

Perceptions

915 MHz 5.9 GHz

▼ Technology Old New
 ▼ Interference Getting worse No problems

▼ Range OK for toll. BUT Allows new applications
 ▼ National Interoperability Doomed by legacy
 ▼ Migration Difficult Easy

▼ Cost Not worth an upgrade May be worth it

▼ Destiny Will fade away The FUTURE

Intermec

Reality

Higher frequency = More cost

Longer range = More cost

Higher data rate = More cost

Multi-appl. capability = More cost

More security = More cost

More features = More cost

TOTAL = Lots more cost

How much is 'lots more'?

▼ Best industry guesses today are:

▼ Basic 'low-end' tags:

2X - 3X

▼ Do-it-all 'high-end' tags:

5X

Intermec

Cost - a big concern

- ▼ 5.9 GHz product development costs (NRE) will be high
- ▼ DSRC has been a cost-driven industry (especially transponder prices)
- **▼** How much is too much cost?
- **▼** Will the market accept the cost?

Intermed

But.....it's 5.9 GHz!

Customers don't care!!

Intermec

What's required to make this work?

- ▼ VALUE to the customer has to increase proportional to cost
- ▼ MULTIPLE APPLICATIONS have to <u>be</u> there to justify additional cost
- ▼ User has to be given the opportunity to SELECT more capability for more cost

Intermeç

Value

- ▼ A value benchmark has been established
- ▼ Added value might include:
 - ➤ more electronic payment opportunities
 - ➤ enroute traveler information
 - ➤ safety services
 - ➤ nationwide interoperability
- ▼ If new devices cost more, they should offer:
 - ➤ more capabilities
 - > more features
 - ➤ more pizzazz

Intermec

Servicing REAL applications

- ▼ The chicken & egg dilemma:
 - ➤ <u>Capable</u> tags won't proliferate until a multiservice infrastructure appears
 - ➤ Hard to rationalize the infrastructure costs without a universe of capable tags
- ▼ The end-user will not break this cycle it must be solved on the institutional side.
- ▼ Availability of services will pull capable tags into circulation.

Letting the Customer Decide

- **▼** Who is the customer?
 - ➤ Traditionally a service provider (toll authority, etc.) who installs infrastructure & resells tags. No choices are offered. Only one service is provided & the tag is simple.
 - ➤ The future Tag customer should be the end user who knows what services he's interested in and buys an appropriate device from offered choices.
- **▼** How can the business model be changed?

Intermec

The Quiz

Answers to the Posed Questions

***Answers have been augmented with audience feedback

Question #1

- ▼ What applications, using short-range wireless communications, are expected to be commercially available:
 - ➤ Within one year Same ones we have today
 - Toll. Border clearance. Parking. Taxi/Limo control at airports. Shell Oil: diagnostics from engine controllers. CVO mainline screening, priority control of traffic signals, traffic probes (TransCom). CVO/port/transit yard control. [other fleet management applications (dispatcher communications)], fuel transactions

Intermec

Q1 Continued

- Within 1-3 years Today + expanded payment systems + vehicle registration (VIN related; Electronic Lic. Plate)+ early transit data systems + (rudimentary) pilot safety systems
 - ➤ Vehicle-Vehicle communications
 - ➤ Dynamic data off vehicle databus
 - ➤ ATIS delivery (real time)
 - Cargo container ID for intermodal freight; baggage monitoring, waste management, vehicle emissions
 - > Safety warning systems (e.g., Highway-Rail Intersections)

Intermeç